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Abstract 

We propose a sophisticated tying mechanism for modeling dele
tion transfonnations between dialects. We empirically show 
that the proposed tying mechanism reduces deletion errors by 
33% when compared to a baseline system using a standard ty
ing mechanism. Statistical tests show that the proposed and 
baseline models make statistically diOcrcnt errors, thus sug
gesting that they are complementary systems in dialect recogni
tion tasks. Pronunciation rules learned by our proposed system 
quantify the occurrence frequency of known rules, and suggest 
mle candidates for further linguistic studies. 
Index Terms: pronunciation model 

1. Introduction 
While many dialect recognition systems take advantage of 
phonotactic differences across dialects, most of these systems 
do not focus on characterizing linguistically interpretable re
sults. Exceptions include [2, I 0, 4, 5]. In [2], acoustic difrer
cnccs caused by phonetic context were used to infer underly
ing phonetic mles. In [4, 5], where discriminative classiers arc 
trained to recognize dialects, and N-grams or context-dependent 
phones helpful in dialect recognition are discussed. This line of 
work has important applications in forensic phonetics [ 1]. 

In our previous work [ I 0], we proposed a pronunciation 
model which characterizes phonetic transfonnat ions across di
alects. We adopted standard triphone state clustering techniques 
used in ASR to model context-dependent phonetic transfomJa
tions across dialects. In this work. we refine our previous model 
to characterize deletion transfonnations more appropriately. We 
show tlmt deletion errors are reduced by 33% compared to our 
previous standard tying system [ I 0]. 

2. Method 

2. 1. Pronunciation i\lodel 

We used an IIMM system for our previously proposed pronun
ciation model. The reference dia lect's pronunciation is modeled 
by the states. and the pronunciation of 1he dialect of interest is 
modeled by the observations emillcd by the ~ latcs. Phonetic 
transformations (deletion. insertion, and substitution) between 
to two dialects arc modeled by state transition probabilities. 

•·1 his work is sponsored by tl1c Command, Conlrol and lnterop
crability Division (CID), which is housed wilhin 1he Department of 
Homeland SC<'uri ty's Science and Technology Direcloralc under Air 
Force Conlrnct FA872 1-05-C-0002. Opinion<, inlet]Jrclalions, conclu
sions and recommendations are 1hose of the authors and are not neces
sarily endorsed by the United Stales Government. 

2. 1.1. IIMM Archirectul•r--------------------..1 

States. Suppose the reference phone sequence is C = 
Ct, c2, .. . , Cn. Each reference phone c ; corresponds to two 
states, a 11orma/ stale S2i - 1 fo llowed by an i11sertio11 stale s 2;. 

Therefore, the corresponding states of the reference phone se-
quence CareS = s1, s2, ... , S2n . Q = Ql, Q2 , ... , Qr represents 
the possible stale transition path taken in S . Q takes on values 
of phones in S by a monotonic order: 

if Qt = s ,, Qr+ l = s1 , then t::; J. ( I) 

The probability being in state x and emitting observation 
Uk at timet. is 

Bz(k) = P(o, = Vk iQt = x ), (2) 

where 1 ::; x :<::: N , 1 ::; k ::; M. 
When traversing over all the possible stale transition paths 

of S, the probability of s, corresponding to stale x and emits Vk 

is 

b,(o1) = B"(k} , (3) 

where s , = x, 1 :<::: i :<::: 2n. 
State Transitions. There are 4 types of state transitions: in
sertion, self- insertion, deletion, and typical transitions. State 
transition types arc represented by r E { ins, sel , del , typ } . 

The state transit ion probability from stale x to state y 
through transition are type r is 

Azry = P (q, t 1 = y , rlqr = x), (4) 

where 1 :<::: x, y ::; N, trans ition type r E { in s,sel,del, t y p}, 
L:Y L.: r Axry = 1, Vx. 

When traversing over all the possible stale transition paths 
of S, the probability of lransitioning from stale s, to state s 1 in 
S through transition type r· is 

{5) 

where I ::; i. j :<::: 2n, s, = .r, s1 = y . Note that if r = Ml, 
then i = j . 

2. 1.2. Decision Tree Clustering 

In the context of our pronunciation model, a decision tree is 
grown fo r each slnte s, where I ::; s ::; N . At each node /.: 
of the tree, o list of auributcs arc used to split the data into two 
subgroups. The auribute 1-h which generales the best split is 
chosen to split the data to children nodes. This spl itling pro
cessing is done recursively until a slop criterion is reached. The 



best splitting is dctcnnincd by an objective function such as the 
log likelihood increase or infonnation gain. 

Assume Pk (j) is the probability that state s emits observa
tion vi at node k, where attribute H k specifies the subgroups of 
s that belong to node k. The likelihood function of state s emit
ting observation Vj at node k is L(o = viis E lh) = pk(j). 
The maximum likelihood estimate of pk(j) is s imply the ob
served relative frequency of observation vi at node k: fh(j) = 
~, where nk (j) is the expected number of times Vj occurred 
"' at node k, and L:i nk(j) = Ilk. The total likelihood at node k 

is 

(6) 

Suppose node kt and node k2 are the children of node /.: , 
then the log likelihood increase of splitting node k to node kt 
and k2 is 

(7) 

2.1.3. Standard 1/'iplwne Tying Mechanism 

Standard tying is similar to how triphonc states are tied in au
tomated speech recognition [6] . Suppose attribute HJk in the 
decision tree model corresponds to the feature J being present 
(k = 1) or absent (k = 2) of the contextual phones of a triphone 
state. 

The log likelihood of a group of clustered triphone states 
are computed using the expected number of emissions of these 
triphones. The expected number of emissions of trip hone states 
q1 that correspond to attribute IlJk emitting observation Vj is 

T 

E(vilq, E HJk) = LP(Oiq, E Hfko >.. ,S)~(o,vi) , (8) 
1=1 

where S arc the states, and q1 all share the same cellfer-phone, 
k = {1, 2}, and 

1 if Ot = Yj 

0 otherwise 

(9) 

( 10) 

The total likelihood of q, E H 1 k is 

( II ) 

After state clus tering, assume triphonc states arc clustered 
into I groups. Group i is spec ified by G, = ( (t , ( ,,, (r), where 
(t spec ifies the le ft context state, (m specifics the center (mid
dle) s tate, and ( r specifi cs the right context s tate. 

The models estimation equations still have the same fonn 
in a typical HMM system [7]: 

Ac,.r 
T ' 

L::t-1 P(O, q, I E c .. r, q, = vi>.. . S) (1 2) 

L:i- 1 l:rP(O,q,_1 E G',!>..,S) 

L:i- 1 ~(0 , q, E G',,l>.., S)6(o,, Vk) (!
3
) 

L;,=1 P(O , q, E G, ,!>.. , S') 

Limitations: The standard triphone tying mechanism 
makes two assumptions for deletion rules. ( I) If a phone is 
deleted, the pronunciation of its previous phone wi ll be aflected 
and characterized phonetically through automatic phone recog
nition or manual phone transcriptions. (2) The phone following 
the deleted phone does not characterize when deletions occur. 
These assumptions might be over-simplifications and only ap
ply to certain deletion mles. For example, one difference be
tween General American English (GAE) and Received Pronun
ciation (RP) in British English is that the fomJCT is rhotic while 
the latter is not. Rhotic speakers pronounce / r/ in all positions, 
while non-rhotic speakers pronounce / r/ only if it is followed 
by a vowel sound in the same syllable. For instance, the word 
park (/p aa r kl) in American English will sound like pak ([p aa: 
k ]1

) in RP, s ince /r/ is foil wed by a consonant /k/. Clearly, this 
non-rhotic mle does not comply with assumption (2). While 
the vowel before /r/, /aa/ docs changes its vowel quality by be
coming longer [aa:], this phenomenon might be too sublet to 
characterize practically in automated systems, and might not be 
true for all deletion transfom1ations across dialects. 

In addition, since deletions arc modeled by deletion tran
sition arcs that skip states (therefore the deleted states will not 
emit anything) in our model, it is more appropriate to use arc 
clustering instead of traditional state clustering to detennine the 
tying stmcture. 

2.1.4. Sophisticated Tying Mechanism 

A s tate tnmsition arc is specified by the origin state and the des
tination state. In the case of deletion arcs, the nomml states 
that are skipped during the transition a lso characterizes the state 
transition arc. 

Consider triphone state Sk - I - Sk- S k + 1· Expected counts 
of the state x being deleted when q1 corresponds to attribute 
ll fk is 

T 

Ed=x = L L P (Qt+l 1 1' = dcl,dlq, E H Jk), (14) 
t=ld~r. 

where d represents the deleted state. 

T 

E df'x = LLP(Qt+1 1 1' 1Qt =X E Hjk )1 (15) 
1= 1 .r 

since state x cannot have deleted if there were transition arcs 
leaving it. 

The total likelihood of Qt corresponding to attribute HJk is 

The log li kelihood increase in decision tree clustering can thus 
be computed to determine the attributes of each group of c lus
tered deletion arcs. After arc clustering, assume deletion arcs 
arc clus tered into J groups. Group j is specified by D 1 = 
(u1 , <;1 , T1 ), where u1 specifies the source of the arc, <;1 spec
ifics the skipped stale, aud T1 specifies the target of the arc. The 
model estimation equation for deletion transitions belonging to 
clustered group D1 is si milar to Eq. ( 12): 

1 r a a: l represents a long [ aa l 



After state clustering, assume triphone states are clustered 
into I groups. Group i is specified by G; = ((L, (m, (r ), where 
(L specifies the left context state, (m specifies the center (mid
dle) state, and (r specifies the right context state. 

After arc clustering, assume deletion arcs are clustered into 
J groups. Group j is specified by D; = (a;, '>i, Tj), where u; 
specifies the source of the arc, '>i specifies the skipped state, and 
r; specifies the target of the arc. 

Suppose we want to compute the tied probabilities of the.the 
triphone state Sk-L - sk - sk+l• where Sk-1 E (l, Sk E (.,., 
and Bk+l E (r. We first compute all the clustered deletion prob
abilities originating from sk. Then we estimate the typical and 
insertion transition probabilities as in the standard tying case 
using a new Lagrange constraint. 

The sum of all deletion probability leaving triphone state 
Sk-1 - S;. - Bk+l is 

(19) 

P(sk+l E >;, Qt+t = sk+2, r = dellqt = Sk) (20) 

where P(Qt+l = Sk+2 E T;,r = dellqt - sk, Si+l E <;;)was 
already computed in Eq. (17) as Av; . 

where E = {at :...1 a2 u ... ur }, and l:e = {ui:' n a!.l n ... ul}. 
r E {typ, ins}. 

2.2. Statistical Test 

We used the matched pairs test in [9] to evaluate whether the 
performance difference of the two systems being compared are 
statistically significant. 

Let us suppose that we can divide the output stream from 
a pronunciation model system into segments in such a way that 
the errors in one segment are statistically independent of the 
errors in any other segment. Suppose we are comparing the 
performance difference of S1 and S2 Let N~ be the number of 
errors made on the i i-th segment by System S1 , and N~ the 
number of errors made by System S2. Note that the type of 
error is unimportant, as long as the method of counting errors is 
consistent for each segment and for both systems. 

Let Z; = Nt- m, i = 1, ... ,n, where n is the number 
of segments. Let J.l.• be the unknown average difference in the 
number of errors in a segment made by the two Systems. We 
would like to ascertain whether J.l.• = 0. The maximum likeli
hood estimate of p.. and the variance of Z; are 

A ~z. 
P.• = L..J

i=1 n 

A 1 ~ 2 
ai = n _ l L..J(Z; - J.l,z) 

i=l 

(22) 

(23) 

Table I : WSJCAMO data partition 

Set Speaker number 
Train 
Dev 
Test 

If W is defined as 

92 
48 
48 

w ,;. 
= A I '-' a. vn 

Duration 
15.3 hr 
4hr 
4hr 

(24) 

then if n is large enough, W will approximate a standard 
normal distribution N(O, 1). We can test the null hypothesis 
HO: J.l.• = 0, bu computing P = 2Pr(Z > Jwl), where Z is a 
random variable with distribution N(O, 1) and w is the realized 
valueofW. 

3. Experiments 
3.1. .\ssumptions and Profocol 

We adapt the assumptions in [10] to the following. 

1. All pronunciation variations across dialects are governed 
by underlying phonetic rules. 

2. The ground-truth surface phones of the WSJCAMO cor
pus are the phonetic transcriptions it provides. 

3. The abiljty to predict ground-truth surface phones using 
the trained pronunciation models indicates how well the 
underlying phonetic rules are retrieved from the pronun
ciation model algorithms. 

3.2. Data 

The speech database used is WSJ-CAMO is the UK English 
equivalent of a subset of the US American English WSJO 
database [11]. The data partition of WSJ-CAMO is listed in 
Table_l. 
3.3. Implementation Details 
3.3.1. Pronunciation Model 

Given the trained pronunciation model, we generate the most 
likely observations given the reference phones, and compare 
the generated observations with the ground-truth observations, 
provided by the phone transcriptions in WSJCAMO. Refer
ence phones are determined by the American English dictionary 
given the text. 

3. 3.2. Statistical Test 

We could divided the generated surface phone outputs into seg
ments where no errors have occurred for some minimal time 
period T ("good" segments) and segments where errors occur 
(''bad" segments), according to [9]. T is required to be suffi
ciently long to ensure that after a good segment, the rst error 
in a bad segment is independent of any previous errors. T was 
swept on the development set (ranging from values of9 to 402), 
and all resulted in similar p-values (p « 0.001) on the test set. 
The number of segments n ranged from 756 to 32491, which is 
assumed to be sufficiently large enough for W to be normally 
distributed, and a good estimate of the variance of z, can be 
obtained. Errors were divided into deletion, insertion, and sub
stitution, and each type of error was analyzed separately. 

3.4. Phone Error Rate Results 

The phone error rate (PER) between the ground-truth surface 
phones and the generated surface phone of each system are 



Table 2: Phone error rate (PER) for each system. Units are in 
%. Total number of phones in the test set: 299,853. 

r-dropping mles are characterized by the right context of /r/. 

4 2 2. Arc clllslering vs. state cl11slering .. 
System Overall Deletion Insertion 

erms of generating dialect-specific pronunciations, standard 
sophisticated tying might not show statistical difference, 

arc clustering is much more suitable in discovering and in· 
reting deletion rules. The arc clustering scheme explicitly 

Substitutior1. 
9.8 t Monophone 15.1 2.0 3.3 

Standard Tying 9.0 2.1 1.9 
Sophisticated Tying 9.0 1.4 2.6 

Table 3: Relative PER improvement (compared to baseline 
Monophone System). Units are in %. 

50 at d 
5:0 bt 

characterize deletion mlcs: the decision tree clustering results 
show potential deletion mle candidates. On the other hand, it 
is much more challenging to linguistically characterize dele· 
tion transfom1ation as phonetic mlcs in state clustering. There
fore, depending on the need of the task, different tying schemes 
"l 

System I Overall I Deletion Insertion Substitutioq;, 
1 

'ght he preferred. For generating dialect-specific prommcia· 
1s or dialect recognition tasks, state clustering is simpler to 
plement and still performs well. If speech science analysis is 
uired, arc clustering is more suitable in characterizing dele

Standard Tying I 40 

I 
-5 42 

Sophisticated Tying 40 30 18 

listed in Table 2. The sub-error categories of deletion, inser· 
lion, and substitution arc also listed in Table 2. The relative im
provement of all systems compared to the baseline monophone 
system is listed in Table 3. All improvements are shown to be 
statistically significant (p « 0.0001) according to the matched 
pairs test described in Section 2.2. 

4. Discussion 
4.1. Context-Dependent Systems vs. Monophone System 

All systems that exploits context infonnation outperformed the 
baseline monophonc system by 40 % relative (p « 0.001.) . 
These results verify that phonetic context infonnation is impor
tant in characterizing dialect differences, as reported in [1 0, ?). 

If we break down the PER into sub-error categories of in
sertion, deletion, and substitution, we see statistically signifi
cant improvements for all categories in all systems, except for 
deletion errors for the standard tying system. Compared to the 
baseline monophone system, the standard tying systems show 
statically significant negative improvement in deletion errors (· 
5 %; p « 0.0001). This result imply that the standard tying 
systems are over-generalizing deletion nrlcs. 

Note that in the standard tying systems, the phone follow
ing the deleted phone is never used to characterized the deletion 
transitions. In the monophonc system, deletion rules are char
acterized by the phone preceding the deleted phone. Phono· 
logically speaking, the phone of interest is generally influenced 
more by its following phone than its preceding phone. In non
rhotic dialects of English, we also know that the right-context 
of /r/ is more important in specify ing non-rhoticity than the left. 
Therefore, without characterizing deletion transitions using the 
right-context phone, it is expected that deletion nrles are over
generalized. We expect that including the phone following the 
deleted phone could characterize deletion transitions more ac
curately. \Vc discuss these details in the next section. 

4.2. Standard Tying vs. Sophisticated Tying 

4.2. I. deletion errors 

The overall PER between the standard and sophisticated tying 
systems arc the same. The matched pairs test shows that the two 
systems ae making statistically di fi"crent errors (p « 0 .0001). 
If we consider deletion errors, we see that the sophisticated ty
ing system beats the standard ty ing system by 33% relative. 
Among the /r/'s that were incorrectly deleted in the standard ty
ing system, the sophisticated tying system correctly generated 
24% of these /r/'s. This result also supports the hypothesis that 

49 
49 

in 
m 

tion mles. 

4.3. Implications for Dialect Recognition 

The statistical test evaluates whether two systems make the 
unique errors. The signicant statistical test results indicate that 
the two systems being compared makes different errors, imply· 
ing that if the pronunciation models are used in dialect rccogni· 
tion tasks, they will fuse well. 

5. Conclusions 
We propose a sophisticated tying mechanism for modeling dele
tion transfonnations between dialects. We empirically show 
that the proposed tying mechanism reduces deletion errors by 
33% when compared to a baseline system using a standard ty
ing mechanism. Statistical tests show that the proposed and 
baseline models make statistically difrerent errors, thus sug
gesting that they are complementary systems in dialect recogni
tion tasks. Pronunciation rules learned by our proposed system 
quantify the occurrence frequency of known rule-s, and suggest 
nrle candidates for further linguistic studies. Potential appli
cations include forensic phonetics, accent training, and dialect 
recognition. 
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